Chapter 01 인공지능, 머신러닝, 딥러닝의 이해
01 인공지능 기술이 가져온 혁신
인공지능이라는 과학 기술
우리의 삶 여러 곳에 스며든 인공지능 기술
언어 인공지능 ChatGPT와 대규모 언어 모델
인공지능을 판별하는 방법: 튜링 테스트
지능에 대한 다양한 정의
다트머스 회의와 인공지능의 역사
02 데이터를 기반으로 학습하는 머신러닝을 알아보자
머신러닝을 정의하고 이해하자
명시적 프로그래밍과 머신러닝
03 딥러닝을 알아보자
생물학에서 밝혀 낸 신경세포의 구조
신경세포를 흉내 낸 프로그램인 퍼셉트론
요약
연습 문제
Chapter 02 딥러닝을 위한 기초 지식
01 딥러닝을 위한 기초 수학: 일차 함수와 이차 함수
함수의 정의
일차 함수와 이차 함수
02 미분을 알아보자
극한의 의미
순간 변화율 = 미분
합성 함수와 연쇄 법칙
딥러닝에서 목적 함수의 미분이 중요한 이유
여러 개의 변수를 가진 함수의 최적화를 위한 편미분
03 머신러닝과 딥러닝의 종류를 알아보자
머신러닝의 종류
회귀와 분류 문제
요약
연습 문제
Chapter 03 개발환경 구축과 넘파이
01 파이썬과 구글 코랩
파이썬 프로그래밍 언어
코랩 환경에서 코딩하기
02 구글 코랩의 여러 가지 기능들
코랩과 가상환경
딥러닝을 위한 라이브러리 살펴보기
03 강력한 기능을 가진 넘파이를 알아보자
다차원 배열의 속성을 알아보자
파이썬의 강력한 자료구조인 리스트와 넘파이의 다차원 배열
다차원 배열의 연산
편리하고 강력한 브로드캐스팅과 벡터화 연산
다차원 배열을 쉽게 생성해 보자
다차원 배열을 합하는 append() 함수
04 넘파이의 고급 기능을 알아보자
인덱싱과 슬라이싱
난수를 생성해 보자
여러 개의 배열값을 얻는 방법
배열의 형태를 바꾸는 reshape() 메소드와 flatten() 메소드
05 딥러닝을 위한 행렬
딥러닝을 위한 행렬의 핵심 개념
행렬 곱 연산
인공신경망과 행렬
단위행렬과의 곱
요약
연습 문제
코딩 문제
Chapter 04 선형 회귀와 경사하강법
01 데이터의 특성과 선형 회귀를 알아보자
특성과 변수
통계학이 하는 일
회귀 분석이란 데이터의 분포를 설명하는 좋은 함수를 찾는 것
02 오차와 오차의 측정
데이터의 분포와 경향성
데이터와 정답의 차이: 오차
평균 절대값 오차와 평균 제곱오차
선형 회귀 직선 구하기 예시
오차 곡선의 최적값을 구하는 기울기와 미분
03 경사하강법을 알아보는 실습
04 사이킷런을 이용한 선형 회귀
여러 가지 머신러닝 라이브러리들
간단한 데이터로 선형 회귀를 수행해 보자
데이터를 시각화하고 차원을 증가시키자
오차 곡면을 알아보자
경사하강법과 학습률
정규화와 표준화
요약
연습 문제
코딩 문제
Chapter 05 신경세포와 퍼셉트론
01 뇌와 신경세포 그리고 퍼셉트론
경이로운 인간의 뇌와 지능의 신비
신경세포를 흉내 낸 프로그램인 퍼셉트론
퍼셉트론과 연결주의의 등장
02 퍼셉트론의 표현 방법
행렬을 이용한 퍼셉트론 표현 방법
신호의 전달 여부를 결정하는 임계값
퍼셉트론 프로그램 만들기
OR 논리 연산을 퍼셉트론으로 구현하자
편향값을 추가하자
편향값을 추가하여 활성화 함수를 간단하게 만들자
편향값을 가진 퍼셉트론으로 구현하자
03 XOR 문제와 다층 퍼셉트론
논리 연산의 결과를 시각화하자
인공지능 연구의 침체기를 가져온 XOR 문제
은닉 노드를 가진 다층 퍼셉트론의 등장
다층 퍼셉트론으로 해결할 수 있는 문제들
04 퍼셉트론 학습시키기
퍼셉트론과 학습의 원리
퍼셉트론의 학습을 위한 행렬 표현 방법
동시에 여러 가지 작업을 처리하는 병렬 처리 시스템
다층 퍼셉트론의 가중치들은 어떻게 학습시킬까
요약
연습 문제
코딩 문제
Chapter 06 오차 역전파
01 활성화 함수와 신경망의 가중치 조절
다층 퍼셉트론의 학습 단계
순전파와 역전파
오차 역전파 알고리즘의 간략한 역사
02 역전파 알고리즘에 대한 직관적 이해
계산 그래프를 이용한 오차 역전파의 이해
계산 그래프의 순방향 계산
계산 그래프의 역방향 계산
03 계산 그래프 실습하기
곱셈 노드, 덧셈 노드의 미분과 역전파 과정
전체 계산 그래프를 만들기
입력 노드에 대한 출력값의 영향을 어떻게 활용할까
오차와 계산 그래프
04 시그모이드 계층의 역전파
시그모이드 함수의 미분과 계산 그래프
퍼셉트론의 구조와 계산 그래프 그리고 오차 역전파의 혁신
05 ReLU 활성화 함수
활성화 함수의 중요성
ReLU 함수를 그려보자
요약
연습 문제
코딩 문제
Chapter 07 텐서플로로 구현하는 딥러닝
01 딥러닝을 위한 도구: 텐서플로
텐서플로와 MNIST 데이터
컴퓨터는 이미지를 어떻게 저장할까
MNIST 데이터 시각화하기
02 딥러닝 모델을 만들고 학습시키기
딥러닝을 위한 모델 만들기와 학습 단계
인공 신경망을 학습시켜 보자
03 신경망 학습의 출력값과 정답의 차이를 알아보자
부드러운 최대값: 소프트맥스 함수
원-핫 인코딩과 범주형 데이터의 평균 제곱오차
원-핫 인코딩 데이터의 오차를 구하는 교차 엔트로피 오차
최적화 기법
요약
연습 문제
코딩 문제
Chapter 08 텐서와 딥러닝 모델 응용
01 텐서를 알아보자
인공지능의 부흥, 고성능 하드웨어 기술 그리고 텐서플로
텐서의 개념
텐서플로 라이브러리
텐서 그래프가 가지는 장점들
완전 연결층을 만드는 방법
입력 형상 지정하기
02 붓꽃 데이터를 분류하는 딥러닝 모델
붓꽃 데이터를 분류하는 모델
붓꽃 데이터를 분류하는 여러 가지 순차 모델
03 딥러닝 모델을 저장하고 불러오기
붓꽃 데이터를 분류하는 모델
04 회귀 문제를 딥러닝을 통해서 풀어보자
회귀 문제를 위한 데이터를 만들고 해석하자
회귀 문제를 풀기 위한 순차 계층 모델
요약
연습 문제
코딩 문제
Chapter 09 딥러닝을 깊이 알아보자
01 딥러닝과 훈련 데이터의 중요성
딥러닝을 위한 훈련 데이터와 인공지능의 실력을 검증하는 데이터
더욱더 많은 데이터를 사용하자, 이미지넷
02 딥러닝 모델의 실력을 알아보자
모델의 정확도가 가지는 문제점
데이터의 편향과 데이터 증강
정확도, 정밀도, 재현율을 알아보자
사이킷런의 성능 지표 함수들
03 다양한 스케일러를 알아보자
다양한 스케일러 살펴보기
04 학습 데이터에만 최적화된 신경망 개선하기: 드롭아웃
드롭아웃으로 과대적합을 예방
05 패션 MNIST 데이터
패션 MNIST 데이터의 필요성
패션 MNIST 이미지 데이터 분류
요약
연습 문제
코딩 문제
Chapter 10 합성곱 신경망
01 디지털 이미지, 합성곱 신경망 그리고 필터
디지털 이미지를 처리하는 방법
인간과 동물의 인식과정에서 착안한 신경망
합성곱과 필터를 알아보자
평균 필터와 가우스 필터
이미지 불러오기와 흐림 필터 적용하기
경계를 검출하기 위한 필터
경계를 검출하기 위한 필터의 원리
02 합성곱 신경망의 기본적 구조
필터와 특징 추출
점점 작아지는 이미지 문제와 패딩
성큼성큼 이동하기: 윈도우와 스트라이드
풀링을 적용하자
03 합성곱 신경망을 위한 채널과 필터, 평탄화 과정
다중 채널에 적용되는 필터
기본 신경망과 합성곱 신경망의 비교
합성곱 신경망의 최종 단계: 평탄화
04 합성곱 신경망의 구조와 모델 훈련 과정
합성곱 신경망 모델의 전체 구조
합성곱 신경망 모델의 훈련
합성곱 신경망 모델의 결과와 시각화
요약
연습 문제
코딩 문제
Chapter 11 합성곱 신경망의 응용
01 과대적합과 과소적합을 방지하는 방법
과대적합을 알아보자
과소적합을 알아보자
교차검증으로 견고한 모델을 만들자
딥러닝 모델의 가중치 초기화 문제
배치 경사하강법, 확률적 경사하강법, 미니 배치 경사하강법
배치 정규화로 성능을 향상시키기
02 CIFAR-10 데이터를 다루자
CIFAR-10 vs CIFAR-100 데이터
CIFAR-10 이미지 데이터 인식을 위한 CNN 모델
CNN 모델을 정교하게 가다듬기
드롭아웃과 데이터 정규화로 모델의 성능 높이기
딥러닝 모델의 성능 높이기
요약
연습 문제
코딩 문제
Chapter 12 데이터 증강
01 캐글을 알아보자
데이터 분석을 위한 플랫폼인 캐글
캐글 잘 활용하기
데이터 마켓과 열린 데이터
02 데이터 증강이란
MNIST 이미지 데이터 증강
이미지 증강 라이브러리와 데이터 제너레이터
회전과 평행이동 변환
뒤집기 변환과 줌 변환
증강 데이터 저장하기
03 오토인코더와 변분 오토인코더
오토인코더와 잠재공간
잡음 제거 오토인코더
변분 오토인코더
요약
연습 문제
코딩 문제
Chapter 13 다양한 딥러닝 기술
01 피드포워드 신경망과 순환 신경망
신호가 출력층 방향으로만 가는 피드포워드 신경망
순차적으로 제공되는 정보를 다루는 순환 신경망
일대다 구조
다대일 구조
다대다 구조
02 생성 인공지능과 적대적 생성 신경망
생성 모델
판별 모델
적대적 생성 신경망
GAN의 발전을 촉진시킨 파생 모델
적대적 생성 신경망의 혁신과 응용 사례
텍스트를 이용하여 이미지를 만드는 인공지능
03 강화학습 이야기
추억의 게임기: 아타리 게임기
현재 상태를 바탕으로 보상을 최대로 하는 강화학습 기술
강화학습의 무한한 가능성
04 트랜스포머와 대규모 언어 모델
기계 번역의 어려움과 순환 신경망의 한계
트랜스포머와 어텐션
ChatGPT의 혁신
대규모 언어 모델의 혁신과 한계
블랙박스 속의 인공지능
불투명한 인공지능을 투명하게 만들려는 노력
인공지능에 가해지는 위협: 적대적 공격
05 딥러닝은 인간의 뇌가 하는 일을 할 수 있을까
뇌과학의 연구가 가져온 딥러닝 기술의 발전
딥러닝과 인공지능의 진전
요약
연습 문제
찾아보기
리뷰
상품평
아직 상품평이 없습니다.
팝업 메시지가 여기에 표시됩니다.